2,670 research outputs found

    Auxiliary field diffusion Monte Carlo calculations of light and medium-mass nuclei with local chiral interactions

    Full text link
    Quantum Monte Carlo methods have recently been employed to study properties of nuclei and infinite matter using local chiral effective field theory interactions. In this work, we present a detailed description of the auxiliary field diffusion Monte Carlo algorithm for nuclei in combination with local chiral two- and three-nucleon interactions up to next-to-next-to-leading order. We show results for the binding energy, charge radius, charge form factor, and Coulomb sum rule in nuclei with 3≀A≀163\le A\le16. Particular attention is devoted to the effect of different operator structures in the three-body force for different cutoffs. The outcomes suggest that local chiral interactions fit to few-body observables give a very good description of the ground-state properties of nuclei up to 16^{16}O, with the exception of one fit for the softer cutoff which predicts overbinding in larger nuclei.Comment: 23 pages, 10 figure

    The “ABC model”: a non-hydrostatic toy model for use in convective-scale data assimilation investigations

    Get PDF
    In developing methods for convective-scale data assimilation (DA) it is necessary to consider the full range of motions governed by the compressible Navier-Stokes equations (including non-hydrostatic and ageostrophic flow). These equations describe motion on a wide range of time-scales with non-linear coupling. For the purpose of developing new DA techniques that suit the convective-scale problem it is helpful to use so-called ‘toy models’ that are easy to run, and contain the same types of motion as the full equation set. Such a model needs to permit hydrostatic and geostrophic balance at large-scales, but to allow imbalance at small-scales, and in particular, it needs to exhibit intermittent convection-like behaviour. Existing ‘toy models’ are not always sufficient for investigating these issues. A simplified system of intermediate complexity derived from the Euler equations is presented, which supports dispersive gravity and acoustic modes. In this system the separation of time scales can be greatly reduced by changing the physical parameters. Unlike in existing toy models, this allows the acoustic modes to be treated explicitly, and hence inexpensively. In addition, the non-linear coupling induced by the equation of state is simplified. This means that the gravity and acoustic modes are less coupled than in conventional models. A vertical slice formulation is used which contains only dry dynamics. The model is shown to give physically reasonable results, and convective behaviour is generated by localised compressible effects. This model provides an affordable and flexible framework within which some of the complex issues of convective-scale DA can later be investigated. The model is called the “ABC model” after the three tunable parameters introduced: A (the pure gravity wave frequency), B (the modulation of the divergent term in the continuity equation), and C (defining the compressibility)

    Effect of Hydro-Resistance Training on Bat Velocity

    Full text link
    The purpose of this study was to determine the effect of hydro-resistance training on bat velocity during mimicked baseball swings in twenty-five female college students. Subjects were pre-tested for bat velocity and assigned to dry land (n = 8), water (n = 8), and control (n = 9) groups. The dry land group swung a 737 g (26 oz) Easton T1 Thunderstick baseball bat for three sets of 15 swings, three days per week, for eight weeks. The water group performed the swings in shoulder deep water. The dry land and water groups also participated in mandatory team general resistance training three days per week. The control group performed no bat swing or resistance-training regimens. Mean bat velocity was measured with an electronic eye-timing device. A 3 x 2 (Group x Time) ANOVA with repeated measures was used for statistical analysis, followed up with Tukey’s post hoc test. Bat velocity decreased significantly for the dry land and water groups (24.0 ± 3.6 m/s to 20.6 ± 4.1 m/s and 23.8 ± 3.5 to 18.8 ± 4.1 m/s, respectively). Bat velocity did not change for the control group (21.5 ± 3.0 m/s to 20.2 ± 2.1 m/s). We speculate that the decreased bat velocity in the dry land and water groups was caused by the mandatory team general resistance-training program

    Evidence for polar jets as precursors of polar plume formation

    Full text link
    Observations from the Hinode/XRT telescope and STEREO/SECCHI/EUVI are utilized to study polar coronal jets and plumes. The study focuses on the temporal evolution of both structures and their relationship. The data sample, spanning April 7-8 2007, shows that over 90% of the 28 observed jet events are associated with polar plumes. EUV images (STEREO/SECCHI) show plume haze rising from the location of approximately 70% of the polar X-ray (Hinode/XRT) and EUV jets, with the plume haze appearing minutes to hours after the jet was observed. The remaining jets occurred in areas where plume material previously existed causing a brightness enhancement of the latter after the jet event. Short-lived, jet-like events and small transient bright points are seen (one at a time) at different locations within the base of pre-existing long-lived plumes. X-ray images also show instances (at least two events) of collimated-thin jets rapidly evolving into significantly wider plume-like structures that are followed by the delayed appearance of plume haze in the EUV. These observations provide evidence that X-ray jets are precursors of polar plumes, and in some cases cause brightenings of plumes. Possible mechanisms to explain the observed jet and plume relationship are discussed.Comment: 10 pages, 4 figures, accepted as APJ Lette

    LANDSAT TM image data quality analysis for energy-related applications

    Get PDF
    This project represents a no-cost agreement between National Aeronautic Space Administration Goddard Space Flight Center (NASA GSFC) and the Pacific Northwest Laboratory (PNL). PNL is a Department of Energy (DOE) national laboratory operted by Battelle Memorial Institute at its Pacific Northwest Laboratories in Richland, Washington. The objective of this investigation is to evaluate LANDSAT's thematic mapper (TM) data quality and utility characteristics from an energy research and technological perspective. Of main interest is the extent to which repetitive TM data might support DOE efforts relating to siting, developing, and monitoring energy-related facilities, and to basic geoscientific research. The investigation utilizes existing staff and facility capabilities, and ongoing programmatic activities at PNL and other DOE national laboratories to cooperatively assess the potential usefulness of the improved experimental TM data. The investigation involves: (1) both LANDSAT 4 and 5 TM data, (2) qualitative and quantitative use consideration, and 3) NASA P (corrected) and A (uncorrected) CCT analysis for a variety of sites of DOE interest. Initial results were presented at the LANDSAT Investigator's Workshops and at specialized LANDSAT TM sessions at various conferences

    Ancient Egypt 1915 Part 1

    Get PDF
    Part 1 of the 1915 Ancient Egypt books. Contents include birds in ancient Egyptian art, excavations at Saqqara, part of a Coptic sermon, and the metals in Egypt.https://knowledge.e.southern.edu/kweeks_coll/1001/thumbnail.jp

    Gauge Group and Topology Change

    Full text link
    The purpose of this study is to examine the effect of topology change in the initial universe. In this study, the concept of GG-cobordism is introduced to argue about the topology change of the manifold on which a transformation group acts. This GG-manifold has a fiber bundle structure if the group action is free and is related to the spacetime in Kaluza-Klein theory or Einstein-Yang-Mills system. Our results revealed that fundamental processes of compactification in GG-manifolds. In these processes, the initial high symmetry and multidimensional universe changes to present universe by the mechanism which lowers the dimensions and symmetries.Comment: 8 page

    Randomised controlled trial of specialist nurse intervention in heart failure

    Get PDF
    <p>Objectives. To determine whether specialist nurse intervention improves outcome in patients with chronic heart failure.</p> <p>Design. Randomised controlled trial.</p> <p>Setting. Acute medical admissions unit in a teaching hospital.</p> <p>Participants. 165 patients admitted with heart failure due to left ventricular systolic dysfunction. The intervention started before discharge and continued thereafter with home visits for up to 1 year.</p> <p>Main outcome measures. Time to first event analysis of death from all causes or readmission to hospital with worsening heart failure.</p> <p>Results. 31 patients (37%) in the intervention group died or were readmitted with heart failure compared with 45 (53%) in the usual care group (hazard ratio=0.61, 95% confidence interval 0.33 to 0.96).Compared with usual care, patients in the intervention group had fewer readmissions for any reason (86 v 114, P=0.018), fewer admissions for heart failure (19 v 45, P<0.001) and spent fewer days in hospital for heart failure (mean 3.43 v 7.46 days, P=0.0051).</p> <p>Conclusions. Specially trained nurses can improve the outcome of patients admitted to hospital with heart failure.</p&gt

    Integrating a framework for conducting public health systems research into statewide operations-based exercises to improve emergency preparedness

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Due to the uncommon nature of large-scale disasters and emergencies, public health practitioners often turn to simulated emergencies, known as “exercises”, for preparedness assessment and improvement. Under the right conditions, exercises can also be used to conduct original public health systems research. This paper describes the integration of a research framework into a statewide operations-based exercise program in California as a systems-based approach for studying public health emergency preparedness and response.</p> <p>Methods</p> <p>We developed a research framework based on the premise that operations-based exercises conducted by medical and public health agencies can be described using epidemiologic concepts. Using this framework, we conducted a survey of key local and regional medical and health agencies throughout California following the 2010 Statewide Medical and Health Exercise. The survey evaluated: (1) the emergency preparedness capabilities activated and functions performed in response to the emergency scenario, and (2) the major challenges to inter-organizational communications and information management.</p> <p>Results</p> <p>Thirty-five local health departments (LHDs), 24 local emergency medical services (EMS) agencies, 121 hospitals, and 5 Regional Disaster Medical and Health Coordinators/Specialists (RDMHC) responded to our survey, representing 57%, 77%, 26% and 83%, respectively, of target agencies in California. We found two sets of response capabilities were activated during the 2010 Statewide Exercise: a set of core capabilities that were common across all agencies, and a set of agency-specific capabilities that were more common among certain agency types. With respect to one response capability in particular, inter-organizational information sharing, we found that the majority of respondents’ comments were related to the complete or partial failure of communications equipment or systems.</p> <p>Conclusions</p> <p>Using the 2010 Statewide Exercise in California as an opportunity to develop our research framework, we characterized several aspects of the public health and medical system’s response to a standardized emergency scenario. From a research perspective, this study provides a potential new framework for conducting exercise-based research. From a practitioner’s perspective, our results provide a starting point for preparedness professionals’ dialogue about expected and actual organizational roles, responsibilities, and resource capacities within the public health system. Additionally, the identification of specific challenges to inter-organizational communications and information management offer specific areas for intervention.</p

    Asymptotic theory for a moving droplet driven by a wettability gradient

    Full text link
    An asymptotic theory is developed for a moving drop driven by a wettability gradient. We distinguish the mesoscale where an exact solution is known for the properly simplified problem. This solution is matched at both -- the advancing and the receding side -- to respective solutions of the problem on the microscale. On the microscale the velocity of movement is used as the small parameter of an asymptotic expansion. Matching gives the droplet shape, velocity of movement as a function of the imposed wettability gradient and droplet volume.Comment: 8 fig
    • 

    corecore